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ABSTRACT

The near field pressure and the radiation impedance for

an infinite phased array of circular pistons (with the same velo-

city magnitude) in a rigid plane baffle are calculated. A slowly

convergent infinite series expression for the pressure, obtained

from the appropriate Green’s function, is transformed by the use

of the Poisson’s sum formula into a more rapidly convergent in-

finite series expression. Numerical results are presented. A

rough estimate of the location and value of the maximum pressure

in the near field is obtained under certain restrictions . The

( radiation impedance of a piston in the infinite array agrees

well with the average radiation impedance of a piston in a large

finite array.

iii
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A. INTRODUCTION

A sonar designer is frequently faced with the task of

calculating or estimating the peak pressure in the near field of

a phased array because the usable power output of an acoustic

underwater transducer is limited by the requirement that the

acoustic pressure in water should not exceed the value at which

cavitation begins. The computation of the peak pressure can be

a rather formidable job because the sitm’rn~tion of the pressures

due to each array element usually cannot be reduced to anything

simple analytically, and the location of the maximum pressure is

not known a priori. Furthermore, to choose the optimum sonar

design one would like to know how the pressure maximum changes

when the sonar array parameters (size of elements, spacing bet-

ween elements, number of elements, direction to which the array

is steered in the far field, etc.) are varied, which might mean

that the computation of the near field pressure has to be per-

formed for a large number of arrays. Thus any simplifications

are welcome as long as the simplifications permit to study the

effects of some of the sonar parameters on the near field

pressure.

Several calculations of the near field pressures for

special distributions of elements in arrays are available. .0

For an infinite array two advantages in the representation of the

near field pressure are attained:10 1) one has to consider 
theI
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pressure in front of one element only, because due to syninetry

all elements are the same, except for a phase factor; 2) the

infinite sum of pressures due to each array element can be trans-

formed by the use of the Poisson’s sum formula into amore ra-

pidly convergent series of terms which resemble waveguide mode

terms in the theory of electromagnetic waves.

One hopes that the inferences drawn from the infinite

array calculations about the effects on the near field due to

changes in the element sizes or spacings between elements will

also apply to arrays with a finite number of elements . The two-

dimensional problem of an infinite array of infinite vibrating

strips in a rigid plane baffle has been studied before;1° we

will now consider the three-dimensional problem of an infinite

phased array of circular pistons in a rigid plane baffle. The

radiation impedances of the pistons will also be calculated . The

velocity magnitudes of the pistons are assumed all to be equal,

but the phases are adjusted so as to steer the far field pressure

maximum in a specified direction .

B. THE PRESSURE FIEL D

Let the infinite array and baffle occupy the plane

z 0, (see Fig. 1). The piston centers are located at x = nd1
= nil2, ~ = o,±1,t2, ... ; nt O,t1,1 2,... . The velocity (in

the z-direction) of the piston in the ~
th row and ~th column is

2



(

assumed to be

I iWt + i’~)l

v = v e  (1)

I
where v is a complex constant, w the radian frequency,t the time,

and

U
= -inkd2~in90sinØ0 

- nkd1sinQ0cosø0, (2)

where k = w/c , c is the velocity of sound in water, and

are angles in spherical coordinates which determine the di-

rection to which the far field pressure maximum is steered .

If the actual pressure at the observation point due to
I 

the mth, ~th piston alone is let be a dimensionless

pressure,

I Pmn = p~~ / pcve (3)

I
where p is the density of water. Similarly let P be the tota~’

I dimensionless pressure at the observation point due to all pis-

tons,

P = ~~~~~~ Pmne ”
~
’

t 

•

, - 
. 

- - - ,
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By the use of a Green’s function Pmn can be written

as~~’
’2

2w a - ikR
“mn = (ik/27r) j  da~ fd r o r0 e mn/Rmn

where Rmn is the distance from a point on the m
th, ~th piston

at r0, a0 to the 
observation point at x, y, z; see Fig. 1;

Rmn = (x~~+ y~~+ z
2)U2 (6)

x~ = x - nd1 
— r0cosa0, 

(7)

= y - 

~~2 
- r0sina0. (8)

I
We now use the following integral representation for spherical

waves 13

_iS
lXn

_iS
2Ym

_
~
S3Z

e 
= 

~ f dslf ds2jds3 :~ + + s~ - k2 (9)

which , when integrated over s3, becomes

‘ I I’ 
.•••—...—•• .——. . —
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x -is y -qz
e mn 1 ds

1f 
ds 2 

e
1
~~1 n 2 m

Ruin 
= 

(10)q

where

2 2 2
q {i(k

2 - 4 - s~ )~~
2 , 0 K s~ + s2 K k= 

(4 + 4 - k2)~~
2, 4 + 4 > k~ . (11)

If we combine Eqs. (4), (5), and (10), and interchangeI 
__________stimmRtion and integration, we obtain

I
2w a oo oo

dr r ~~ JdS~~r ds 2I (2ir)2 j  da
0j  

-~~~

o o L

I
( i/ q)exp( iy ~~ - is1x - is 2y - qz)  (12)m

We now app ly Poisson ’s sum formula14’15I
2irinsI 

~~ J 
ds f ( s ) e  = f(n )

n=-~ -
~~~ n=~~oo (13)I

twice to Eqs. (12), which yields

5

____ - —
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-T(n ,m) kz 27r a
= d1d2 n~~°° 

~~ 
~(n m) f da

0j
dr0r0

exp [ih(n)(kr0coscz0 
- kx) + ig (m) (kr 0sina0 - ky)] . (14)

h(n) = sin90cosØ + 2irn/kd 1 (15)

g(m) = sin90sinØ0 + 27rm/kd2 (16)

w(n ,m) = {[h(n)1 
2 

~ [g (m)] 
2~
j
1/2 (17)

i{1
_
[w(n,m)]2)1/2 , 0 < w(n ,m) <. 1;

T(n ,m) = { [w(n,ni)] 2 - i}1sI2 , w(n ,m) >1. (18)

. 16Since

2r (

L da0 exp ikr0fh (n)cosa 0 + g (m) sina0]

= 2w J0[w(n ,ni) kr 0) , (

19)6
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where is a Bessel function of order zero, and since17

jdr0r0 J0(wkr0) = (a/wk)J1(wka) (20)

where J1 is a Bessel function of order one, we finally obtain

frc”n Fq. (14)

p iira2 
~~ ~~~. 2J1[w(n,uOka] ~_ih(n)kx_ig(m)ky_T(n,m)kz

d1d2 ~~ 
w(n,m)ka T(n,ni)

n=-co m=-~ (21)

which is the desired exact expression for the pres sure at x ,y , z

(either near field or far field) due to the infinite array .

The form of Eq. (21) is similar to the expansions of

electromagnetic fields in waveguide modes.18 The double series

in Eq. (21) i~ more rapidly convergent than the original series

from Eqs. (4) and (5); for z > 0 the terms in the sum are de-

creasing exponentially with increasing m and n, and for z = 0

the terms are decreasing as [(n/d1)
2 

+ (m/d 2)
2J5/4.

Let us now consider some special cases of Eq. (21) .

If kz >> 1 and kd1 < ir , kd2 < ir, all the terms are exponentially

decreasing except the one for n = m = 0. Since

w(0,O) = sin90 (22)

7
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and

T(0 ,0) = icos 90 , (23)

I
if we neglect the exponentially attenuated terms, we obtain a

single-term approximation for the pressure

ira2 2J1(kasinQ 0)
“~~~~ 

~
‘l = d1d2 kasin90 ~c ’ kz >> 1, (24)

where P~ is the dimensionless pressure which one would have in

the water if the whole z = 0 plane were vibrating continuously

with the normal velocity

iwt-ikx sin9 cosø0-iky sin9 sinø
v
~~

=ve 0 0 0 (2 5)

i.e., if instead of a plane partially filled with pistons (each of

which move with the same velocity as a rigid body) we would have

a plane on which each infinitesimal area element moves with the

velocity given by Eq. (25), then the pressure would be1°

I’~ = (1/cos90)exp(-ikx sin80cosØ0 
- iky sin90sinØ0 

- ikz cos90)
(26)

r 8
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Thus the approximate P1 as compared to P for kz >> 1 is re-

duced by the ratio of the piston area ira2 to the area of the

array per piston d1d2 (because only the fraction ~a2/d1d2 of the

plane z = 0 is vibrating in the piston array, while the whole

plane is vibrating for the continuous plane radiator) and by the

directivity of the circular piston 2J1(kasin90)/(kasin90) K 1
(because the piston vibrates as a rigid body, therefore in a

direction 9~ ~ 0 the wavelets arriving from different portions

of the same piston are not quite in phase, which results in par-

tial cancellation ; all the waves are in phase for the continuous

plane radiator) .

The n m = 0 term dominates,and we obtain P1 from

Eq. (24) as an approximation for P also when d1 
-

~~ 0, d2 0,

a -
~~ 0, i.e., when the piston array consists of small pistons

close together, because such an array approximates the continuous

plane radiator .

Fig. 2 shows ~~ vs. kz for equal spacings between rows

and columns, kd1 = kd2 = 3, and three values of the piston radii,

ka = 0.5, 1.0, and 1.5; the pressure is evaluated on the axis

through the center of a piston, kx ky = 0, and the array radiates

in the broadside direction norma l to the plane containing the

array , 9
~ 

= = 00 For ka = 1.5 the pistons are touching each

other. For large values of kz ~~ approaches the constant I~11
given by Eq. (24).

9
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Fig. 3 shows IPI vs. kx for = 00 , 600 , and 800 ,

and = 00 ; the other parameters are: kd1 = kd2 = 3, ka = 1,
I ky = kz = 0. For 9~ = 0° the pressure distribution is relatively

smooth, while for larger angles it becomes more undulatory . As

9
~ 

increases, the maximum ~~ increases because the leading n =

m 0 term in Eq. (21) is proportional to l/T(O,0) = 1/icosQ0.

For 9~ -
~~ 90° we would have 1PI

I The single-term approximation P1 does not show any

I undulatory behavior ; therefore let us obtain a two-term approxi-

mation to explain the maxima and minima in Fig. 3. For

simplicity let 00 = 00 , kd1 K n- , kd2 K kd1, and > 00 , then

the next largest term after the n m = 0 term is the n=-l,

I m~0 term. Let us call the approximation consisting of the two

terms n=-1, 0 and ni=0 the pressure P2. Let us further assume

that ka is small enough so that 2J1 [w(n ,m)ka]/w(n,m)ka ~ l for

both terms. Thus we obtain an approximation which for 00 = 00

is independent of the y-coordinate;

2 -ikx sin 9 -ikz cos90ira 0 e
2 = djd 2

e cos90

(

~~~~~~~~~~~~~~~~~~~~~ 
-sin90]2-l~~

”2

+ 

[[(2ir/kd1) 
- sin90]2 - j~ 1f2 (27)

F
r Consider the case kz = 0 , then

10
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p 
2 i.

~P 2f d1d2 cos9~ 
+ 

([(2ir/k~1) 
- sinø0}2 - i}

l[2 
(28)

The two terms in Eq. (28) can be considered as vec-

tors in the complex plane. Thus we will have a maximum when the
phase 2ir (x/d 1) + ir/2 of the second term becomes zero, or when
the x-coordinate is

Xmax = -d1/ 4 , (29)

independent of 9
~
, d2, or a.

Similarly a minimum will be obtained at

X j + d1/ 4 .  
(30)

The positions of the minima and the maxima agree well

with the data in Fig. 3 for 9~ > 0°. For the values at the maxi-
mum and at the minimum Eq. (28) yields 1.19 and 0.21 at 9 = 60°;

and 2.74 and 1.29 at 9 = 800, which are in a reasonable agree-

nient with the values shown in Fig . 3.

• U Eq. (28) yields the maximum pressure

11
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ira 2 1 1
max d1d2 cos90 

+ 

ft2ir/kd ) - sinQ0]2 - 1)
1/2 

(31)

under the condition kz 0. However, for kz > 0 the second term

in the more general Eq. (27) is exponentially decreased ; there-

fore, even if we consider all values of x,y, and z, the absolute

maximum of I~2I must be on the plane kz = 0, and its value is

given by Eq. (31), when 00 = 0°, &,, > 0°, kd1 K ir , and kd2 ~ kd1.

Fig. 4 shows ~~ vs. kx for ka = 0.5, 1.0, and 1.5,

and kd1 = kd2 = 3, ky = kz = 0 , 00 = 0° , 9~ = 60° . The pressure

levels increase as ka increases because a larger fraction of the

array plane radiates. A larger fraction of the array plane radi-

ates also if ka is kept constant and kd1 and kd2 are decreased.

I ~ vs. kx for the latter case is shown in Fig . 5, where ka = 1,

kd1 = kd2 = 2, 2.5, and 3, and kz ky = 0, 
~~0 

= 0° 9~ = 60°.

Note that for kd1 = kd2 K 3 in Fig . 5 more than one cycle in the

undulatory pressure is shown, because due to symmetry the pressure

values are repeated at x, x ± d1, x ± 2d1, etc . The pressure dis-

tribution becomes relatively more undulatory as the spacing bet-

ween pistons is increased. When ka = 1.5 and kd1 = kd2 = 3 in

Fig. 4, and when ka = 1 and kd1 = kd2 2 in Fig . 5, then the

pistons are touching each other, and the same fraction in 4 of

the array plane radiates in both cases. However, the maxi-

mum pressure in Fig. 4 for the larger piston ka = 1.5 is

about 247. larger than for the smaller piston ka 1 in Fig . 5.

I
12
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The pressure is also more undulatory (i.e., the ratio of the

max imum pressure to the minimum pressure increases) for the

larger piston . All of the above features can be explained quali-

tatively by considering the two-term approximation P2. As kd1
is increased , the magnitude of the second term in the parentheses

in P2 in Eq. (28) is increased ; therefore the pressure be-

comes more undulatory as the spacing between pistons is increased .

If we keep the ratio 7ra2/d1d2 constant in Eq. (28) or Eq. (31),
• then for a larger piston we have a larger kd1, and thus a larger

I maximum pressure and a more undulatory pressure distribution.

Although P2 is useful as a guide to the general be-I havior of the pressure , it is of less value in the calculation of

I the actual pressure magnitudes; see Table I. Furthermore, P2
does not agree with the behavior of the pressure for ka 0.5

in Fig . 4; while the maxima and minima should be located at

±d1/4 independent of 9~ , d2, or a, the maxima and minima have

I been shif ted for the ka 0.5 curve in Fig . 4. This curve is

I the only one of those shown in Figs . 3, 4, and 5, for which

a < d1/4 , i.e., for which Eq. (29) predicts a maximum pressure

I on the adjacent baffle off the surface of the piston ; however ,

the actual maximum is on the surface of the piston .

Moreover, according to Eq. (27) P2 is independent of

ky, while the contours of ~~ in Fig . 6 for z = 0 show a ky de-

pendence . The pressure contours in the planes x 0 and y 0

are shown in Figs. 7 and 8, when kd1 = lcd2 = 3 , ka 1, 00 
00 ,

• 13
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and Oo = 600. Since = o~ the pressure field is synmietric

about the x-axis, and only pressures for ky > 0 are shown. For

large values of k; I~I = 0.63 in Figs. 7 and 8.

C. RADIATION IMPEDANCE

The force on the intl~,n
tli piston divided by the velo-

city Vmn~ is the radiation impedance p cira2Z, where Z is a dim-

ensionless radiation impedance coefficient. Due to symetry Z

is the same for all pistons .

2w a
Z = (1/ira2) r da rdr r ~

‘ = R + ix
Jo Jo k=o (32)

I
where x = r cosa, y = r sina, and P is given by Eq. (21). The

integrals in Eq. (32) are the same as in Eqs. (19) and (20), thus

I
= 
j~~2 2J~~w(nrn)ka 2 

T(n ,m)
n=-~ u~ -~ (33)

For kd1 K in, kd2 K in the d imensionless radiation resistance R

is given by the n = m = 0 term,

V

,ra2 f2J 1 ka sineo)12 1R = d1d2 
~ 

ka sin90 J cos90 (34)

‘4
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while the reactance X is given by the infinite sum without the

n = in = 0 term . The corresponding quantities Z~ = Rc + iXc for

the cont inuous plane radiator are1°

= 1/cos9 0, (35)

• Xc = O .  (36)

The fact that the radiation resistance should be proportional

to 1/cos90 can also be deduced for a finite array for 9~ K in/2

by the use of arguments involving the array beaniwidth in the

far field.8

One could also obtain the radiation impedance by

sunining an infinite series of the appropriate mutual coupling

coefficients19; however, the series in Eq. (33) converges more

rapidly than such a series of mutual coupling coefficients, and

thus is more useful. An approximate expression for Z has been

obtained before2° by the application of Poisson’ s sum formula

to a si’ninntion of approximate mutual coupling coefficients, but

the exact Eq. (33) is even simpler than the approximate expression.

Fig. 9 shows X vs. kd1 = kd2 for three values of

and k.a = 0.5 , O
~ 

= 00 . As the spacing between pistons is in-

creas ed, the radiation resistance R is decreased, which is ob-

vious from Eq. (34), and the radiation reactance X is increased ,

15

I
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as shown in Fig. 9. The radiation resistance is proportional

to the energy which is radiated to the far field; the radiation

reactance is proportional to the energy which just fluctuates

in the near field .2’ When the whole plane is vibrating, then

there is no energy fluctuating in the near field, see Eq. (36),

while for the set of parameters used in Fig. 9 the near field

fluctuating energy is increased as the ratio of the active pis-

ton areas to the passive baffle area is decreased by increasing

kd1 = kd2 and keeping ka constant.

If the ratio of the active piston areas to the passive

baffle area is decreased by decreasing ka and keeping kd1 = kd2
constant, the near field fluctuating energy may be increased or

decreased , see Fig. 10, where X vs. ka is shown for three values

of 9~ , and kd1 = kd2 = 3 , 00 = 0° .

Fig. 11 shows X vs. 9
~ 

for three values of ka, and

kd1 = kd2 = 3, 00 = 0°.

In Fig. 12 the radiation impedance of a piston in the

infinite array is compared with the average radiation impedance

Ray + iXav of a piston in a finite array of 12 rows (parallel

to the y-axis) and 229 columns (parallel to the x-axis). The

radiation impedance of a piston in the finite array is obtained

by summing the appropriate mutual coupling coefficients ,19 and

in general the impedances vary from piston to piston . The

average radiation impedance for the finite array is obtained

16
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by sunining the impedances of all the pistons and by dividing the

sum by the total number of pistons . The agreement in Fig . 12

for kd1 = kd2 = 2.51, ka = 0.80, 0~ = 0~ , is good except near

= 90° where, of course, R for the infinite array becomes in-
finite, while for the finite array Ray is finite.

D. CONCLUSIONS

We have obtained more rapidly convergent infinite series

expressions for the near field pressures and the radiation im-

pedances of circular pistons in an infinite phased array . Numer-

ical results have been obtained for a limited number of cases,

and these cases indicate :

1) A single-term approximation P1, see Eq. (24), is

sufficient to represent the pressure if the distance from the

array kz is larger than 1 or if the array consists of small

(ka << 1) pistons close together.

2) A two-term approximation P2, see Eq. (27), gives

a rough estimate of the pressure when 00 = 0°, 9c~ 
> 0~ , kd1 K in,

and kd2 <lcd1; in particular an approximate location, see Eq. (29) ,

and value , see Eq. (31), of the maximum near field pressure can

be obtained , and some gross features of the pressure distribution

can be predicted .

3) For 9 Q0 the pressure distribution is relatively

smooth, but as 9
~ 

increases, the pressure distribution becomes

17
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more undulatory , and the maximum pressure increases.
I 4) If we keep the piston radius constant and in-

I crease the spacing between pistons, the pressure distribution

becomes more undulatory.

I 5) If we keep the ratio of the piston areas to the

baffle area constant (some times called the “packing factor”),

then larger pistons further apart have a larger maximum pressure

and a more undulatory pressure distribution than smaller pistons

closer together.

6) The near field pressure magnitude and the radi-

ation resistance increase without bounds as 9 -
~~ 90°, while the

radiation reactance remains finite for kd1 K in and kd2 K in.

7) The radiation impedance of a piston in the in-

finite array agrees well with the average radiation impedance

of a piston in a large finite array , except near 9
~ 

90°.

I
I
I

18
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TABLE I

Comparison of max and the actual

maximiun of l~l

kd1 kd 2 ka 9~ ~~2 ’max Maximum J P )

3 3 1 60° 1.19 1.18

3 3 1 80° 2.74 2.55

2.5 2.5 1 600 1.39 1.26

2 2 1 60° 1.95 1.64

3 3 1.5 60° 2.67 2.04

3 3 0.5 60° 0.30 0.47

3 2 1 60° 1.78 1.59

= 0° for all cases
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